

# Experiment

## Aim

To study the effectiveness of different common oils (Castor oil, Cotton seed oil, Coconut oil, Kerosene oil, Mustard oil) in forming emulsions.

## Theory

An emulsifier can be defined as a substance that acts as a stabilizer for emulsions. And it also prevents liquids that ordinarily don't mix from separating. Depending upon the physical properties and the chemical composition of the oil, some oils form emulsions readily with water whereas many others form with great difficulty.

## Material Required

Five stoppered bottles or boiling tubes, measuring cylinder, stop-watch or simple watch, 5 ml pipettes, castor oil, cotton seed oil, coconut oil, kerosene oil, mustard oil and 1% soap solution. (1 gm dissolved in 100 ml of distilled water).

## Procedure

1. Take five stoppered bottles and wash them with water. Label them as A, B, C, D and E.
2. Take 5 ml of each of the oils separately in tubes A, B, C, D and E.
3. Add 50 ml of distilled water to each tube.
4. Take bottle A, stopper it and shake vigorously for one minute. Then allow it to stand.
5. Note the time taken for the two layers to separate out.
6. Similarly, take bottles B, C, D and E and note the time taken for the separation of two layers in each case.
7. Now add 10 drops of 1% soap solution or 1% sodium oleate solution to each of the five bottles and find out the time taken for the two layers to separate. Record the observations in table.1.

Table.1.

| Bottle or Tube | Name of the oil | Time is taken for the separation of layers |                     |
|----------------|-----------------|--------------------------------------------|---------------------|
|                |                 | Without soap/detergent                     | With soap/detergent |
| A.             | Castor oil      | 5                                          | 50                  |
| B.             | Coconut oil     | 5                                          | 50                  |
| C.             | Mustard oil     | 5                                          | 50                  |
| D.             | Cotton seed oil | 5                                          | 50                  |
| E.             | Kerosene oil    | 5                                          | 50                  |

## Result

It is clear from the above observations that \_\_\_\_\_ oil takes longest time to get separated from its emulsion and is rated 1 and \_\_\_\_\_ oil takes the minimum time and is rated 5. The decreasing order of stability or effectiveness is \_\_\_\_\_.

## Precautions

1. Add an equal number of drops of soap solution to all the bottles.
2. Each bottle should be shaken vigorously and for same time.
3. The time should be recorded carefully. Start the stopwatch immediately after shaking is stopped and stop it immediately when the two layers just separate.

## VIVA VOCE

### Q 1. **What is an emulsion?**

**Ans.** An emulsion is a colloidal dispersion of two immiscible liquids, where one liquid is dispersed in the form of small droplets throughout the other liquid.

### Q 2. **How are emulsions different from solutions and suspensions?**

**Ans.** Emulsions differ from solutions as they are not completely dissolved, and from suspensions as the dispersed particles are much smaller and do not settle out over time.

### Q 3. **Why is it important to study the effectiveness of different oils in forming emulsions?**

**Ans.** Understanding the effectiveness of different oils in forming emulsions is crucial for various industrial processes such as food preparation, pharmaceuticals, cosmetics, and in the production of paints and coatings.

### Q 4. **What factors affect the stability of emulsions?**

**Ans.** Factors such as the size of the dispersed droplets, the presence of emulsifiers, the viscosity of the liquids, and the temperature can affect the stability of emulsions.

### Q 5. **How can you determine the effectiveness of oils in forming emulsions?**

**Ans.** The effectiveness of oils in forming emulsions can be determined by observing the ease with which the oil forms a stable emulsion when mixed with water and agitated.

### Q 6. **What role do emulsifiers play in stabilizing emulsions?**

**Ans.** Emulsifiers are surface-active agents that help to stabilize emulsions by reducing the interfacial tension between the two immiscible liquids, thus preventing the droplets from coalescing.

### Q 7. **What are the characteristics of a stable emulsion?**

**Ans.** A stable emulsion should have uniform droplet size, minimal coalescence or separation of phases over time, and should resist breaking when subjected to various physical forces.

### Q 8. **Can you name some common emulsions used in daily life?**

**Ans.** Examples of common emulsions include milk (oil-in-water emulsion), mayonnaise, salad dressings, and various cosmetics such as creams and lotions.

### Q 9. **How does the chemical composition of different oils affect their ability to form emulsions?**

**Ans.** The chemical composition of oils, particularly their fatty acid content and molecular structure, can influence their ability to form emulsions and interact with water molecules.